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We establish large deviation formulas for linear statistics on the N transmission eigenvalues �Ti� of
a chaotic cavity, in the framework of random matrix theory. Given any linear statistics of interest
A=�i=1

N a�Ti�, the probability distribution PA�A ,N� of A generically satisfies the large deviation formula
limN→��−2 log PA�Nx ,N� /�N2�=�A�x�, where �A�x� is a rate function that we compute explicitly in many
cases �conductance, shot noise, and moments� and � corresponds to different symmetry classes. Using these
large deviation expressions, it is possible to recover easily known results and to produce new formulas, such as
a closed form expression for v�n�=limN→� var�Tn� �where Tn=�iTi

n� for arbitrary integer n. The universal limit
v�=limn→� v�n�=1 /2�� is also computed exactly. The distributions display a central Gaussian region flanked
on both sides by non-Gaussian tails. At the junction of the two regimes, weakly nonanalytical points appear, a
direct consequence of phase transitions in an associated Coulomb gas problem. Numerical checks are also
provided, which are in full agreement with our asymptotic results in both real and Laplace space even for
moderately small N. Part of the results have been announced by Vivo et al. �Phys. Rev. Lett. 101, 216809
�2008��.
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I. INTRODUCTION

We consider the statistics of quantum transport through a
chaotic cavity with N1=N2=N�1 open channels in the two
attached leads. It is well established that the electrical current
flowing through a cavity of submicron dimensions presents
time-dependent fluctuations which persist down to zero
temperature1 and are thus associated with the granularity of
the electron charge e. Among the characteristic features ob-
served in experiments, we can mention weak localization,2

universality in conductance fluctuations,3 and constant Fano
factor.4 In the Landauer-Büttiker scattering approach,1,5,6 the
wave-function coefficients of the incoming and outgoing
electrons are related through the unitary scattering matrix
S�2N�2N�

S = �r t�

t r�
	 , �1�

where the transmission �t , t�� and reflection �r ,r�� blocks are
�N�N� matrices encoding the transmission and reflection
coefficients among different channels. Many quantities of in-
terest for the experiments can be extracted from the eigen-
values of the hermitian matrix tt†: for example, the dimen-
sionless conductance and the shot noise are given,
respectively, by G=Tr�tt†� �Ref. 5� and P=Tr�tt†�1− tt†��.7,8

Random matrix theory has been very successful in
describing the statistics of universal fluctuations in such
systems and complements the fruitful semiclassical
approach.9–13 The simplest way to model the scattering ma-
trix S for the case of chaotic dynamics is to assume that it
is drawn from a suitable ensemble of random matrices with
the overall constraint of unitarity.14–17 Through a maximum
entropy approach with the assumption of ballistic point

contacts,1 one derives that the probability distribution of S
should be uniform within the unitary group, i.e., S belongs to
one of Dyson’s circular ensembles.18,19

It is then a nontrivial task to extract from this information
the joint probability density �jpd� of the transmission eigen-
values �Ti� of the matrix tt†, from which the statistics of
interesting experimental quantities could be, in principle, de-
rived. Fortunately, this can be done1,16,20,21 and the expres-
sion reads

P�T1, . . . ,TN� = AN

j�k

�Tj − Tk��

i=1

N

Ti
�/2−1, �2�

where the Dyson index � characterizes different symmetry
classes ��=1,2 according to the presence or absence of
time-reversal symmetry and �=4 in case of spin-flip symme-
try�. The eigenvalues Ti are correlated random variables be-
tween 0 and 1. The constant AN is explicitly known from the
celebrated Selberg’s integral as

AN
−1 = 


j=0

N−1
	�1 +

�

2
+ j

�

2
		��

2
�j + 1�
	�1 + j

�

2
	

	�1 +
�

2
		��

2
+ 1 + �N + j − 1�

�

2

 . �3�

From Eq. �2�, in principle, the statistics of all observables
of interest can be calculated. In this paper, we shall focus on
the following:

G = �
i=1

N

Ti �conductance� , �4�
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P = �
i=1

N

Ti�1 − Ti� �shot noise� , �5�

Tn = �
i=1

N

Ti
n �integer moments� �6�

although, in principle, any linear statistics22 A=�i=1
N a�Ti� can

be tackled with the method described below. It is worth men-
tioning that an increasing interest for the moments and cu-
mulants of the transmission eigenvalues can be observed in
recent theoretical23 and experimental works.24

Many results are known for the average and the variance
of the above quantities, both for large N �Refs. 1, 25, and 26�
and, very recently, also for a fixed and finite number of chan-
nels N1 ,N2.26–29 In particular, a general formula for the vari-
ance of any linear statistics A=�i=1

N a�
i� �where Ti= �1
+
i�−1� in the limit of large number of open channels is
known from Beenakker.30 However, at least for the case A
=Tn �integer moments�, this formula is of little practical use.
The method we introduce below allows to obtain the sought
quantity v�n�=limN→� var�Tn� in a neat and explicit way.

In contrast with the case of mean and variance, for which
a wealth of results are available �see, e.g., Refs. 1 and 31,
and references therein�, much less is known for the full
distribution of the quantities above: for the conductance, an
explicit expression was obtained for N1=N2=1 ,2 �Refs.
32–34� while more results are available in the case of quasi-
one-dimensional wires35 and three-dimensional insulators.36

For the shot noise, the distribution was known only for N1
=N2=1.37 Very recently, Sommers et al.38 announced two
formulas for the distribution of the conductance and the shot
noise, valid at arbitrary number of open channels and for any
�, which are based on Fourier expansions. Such results
are then incorporated and expanded in Ref. 39. In Refs. 40
and 41 along with recursion formulas for the efficient com-
putation of conductance and shot noise cumulants, an
asymptotic analysis for the distribution functions of these
quantities in the limit of many open channels was reported.
In a recent letter,42 we announced the computation of the
same asymptotics �in the form of large deviation expres-
sions� using a Coulomb gas method and we pointed out a
significant discrepancy with respect to the claims by Osipov
and Kanzieper.40,41 We will discuss in detail this disagree-
ment and the way to sort it out convincingly in Sec. IV D for
the conductance case for �=2.

The results of Refs. 38 and 39 concerning the distribu-
tion of conductance are formal in nature in the form of an
�N�N� determinant and it is difficult to obtain an explicit
form for the distribution in the large N limit. The advantage
of the Coulomb gas approach, used in this paper, is that it
provides an explicit expression for the full distribution of the
conductance and shot noise in the large N limit. Given some
recent experimental progresses,43 which made eventually
possible to explore the full distribution for the conductance
�and not just its mean and variance�, it is of great interest to
deepen our knowledge about distributions of other quantities,
whose experimental test may be soon within reach.

It is the purpose of the present paper to build on42 and
establish exact large deviation formulas for the distribution
of any linear statistics on the transmission eigenvalues of a
symmetric cavity with N1=N2=N�1 open channels. More
precisely, for any linear statistics A whose probability density
function �pdf� is denoted as PA�A ,N�, we have44

lim
N→�

�−
2 log PA�A = Nx,N�

�N2 
 = �A�x� , �7�

where the large deviation function �A�x� �usually called rate
function� is computed exactly for conductance �A=G�, shot
noise �A= P�, and integer moments �A=Tn�. The method can
be extended to the case of asymmetric cavities N1=�N2 and
is based on a combination of the standard Coulomb gas anal-
ogy by Dyson and functional methods recently exploited in
Ref. 45 in the context of Gaussian random matrices. This
approach has been then fruitfully applied to many other
problems in statistical physics.45–53

The paper is organized as follows. Section II provides a
quick summary of our main results. In Sec. III, we summa-
rize the Coulomb gas method that can, in principle, be used
to obtain the rate function associated with arbitrary linear
statistics. In Secs. IV–VI, we use this general method to
obtain explicit results, respectively, for the conductance, shot
noise, and integer moments. Finally we conclude in Sec. VII
with a summary and some open problems.

II. SUMMARY OF RESULTS

A. Distribution of conductance G

We obtain the following exact expression for the rate
function in the case of conductance �G� �Fig. 1�:

�G�x� =�
1

2
− log�4x� for 0 � x �

1

4

8�x −
1

2
	2

for
1

4
� x �

3

4

1

2
− log�4�1 − x�� for

3

4
� x � 1

� . �8�

The rate function has a quadratic form near its minimum at
x=1 /2 in the range 1 /4�x�3 /4. Using Eq. �7�, it then

FIG. 1. �Color online� �G�x� and �P�x� as in Eqs. �8� and �10�.
The black dots highlight the critical points on each curve.
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follows that the distribution PG�G ,N� has a Gaussian form
close to its peak

PG�G,N� � exp�−
�

2
N2�G�G

N
	


= exp�−
�

2
N28�G

N
−

1

2
	2


= exp�−
1

2�1/8���G −
N

2
	2
 �9�

from which one easily reads off the mean and variance �G�
=N /2 and var�G�=1 /8�, which agree with their known
large N values. The fact that the variance becomes indepen-
dent of N for large N is referred to as the universal conduc-
tance fluctuations. This central Gaussian regime is valid over
the region N /4�G�3N /4. Outside this central zone,
PG�G ,N� has non-Gaussian large deviation power-law tails.
Using Eq. �8� in Eq. �7� near x=0 and x=1, we get
PG�G ,N��G�N2/2 �as G→0� and PG�G ,N���N−G��N2/2

�as G→N� which are in agreement, to leading order in large
N, with the exact far tails obtained in Refs. 38, 39, and 54. It
turns out that while the central Gaussian regime matches
continuously with the two side regimes, there is a weak sin-
gularity at the two critical points G=N /4 and G=3N /4 �only
the third derivative is discontinuous�. One of our central re-
sults is to show that these two weak singularities in the con-
ductance distribution arise due to two phase transitions in the
associated Coulomb gas problem where the average charge
density undergoes abrupt changes at these critical points. We
note that an intermediate regime with an exponential tail
claimed in Refs. 40 and 41 does not appear in our solutions,
and we will comment in detail about such discrepancy in
Sec. IV D.

B. Distribution of shot noise P

For the shot noise, the exact rate function reads

�P�x� =�
1

4
− 2 log 2 −

1

2
log x for 0 � x �

1

16

64�x −
1

8
	2

for
1

16
� x �

3

16

1

4
− 2 log 2 −

1

2
log�1

4
− x	 for

3

16
� x �

1

4

� .

�10�

Thus the shot noise distribution PP�P ,N�, in the large N
limit, also has a central Gaussian regime over N /16� P
�3N /16 where

PP�P,N� � exp�−
�

2
N2�P�P

N
	


= exp�−
�

2
N264�P

N
−

1

8
	2


= exp�−
1

2�1/64���P −
N

8
	2
 �11�

yielding �P�=N /8 and var�P�=1 /64�. As in the case of
conductance, this central Gaussian regime is flanked on
both sides by two non-Gaussian power-law tails with weak
third-order singularities at the transition points P=N /16 and
P=3N /16.

C. Distribution of integer moments Tn

For general n
1, the computation of the full rate function
�Tn

�x� and hence the large N behavior of the distribution
PTn

�Tn ,N� turns out to be rather cumbersome. However, the
distribution PTn

�Tn ,N� shares some common qualitative fea-
tures with the conductance and the shot-noise distributions.
For example, we show that for any n
1, there is a central
Gaussian regime where the rate function �Tn

�x� has a qua-
dratic form given exactly by

�Tn
�x� =

bn

2 �x −
	�n + 1/2�
��	�n + 1�


2

, �12�

where bn= 4�	�n�	�n+1�
�	�n+1/2��2 . This implies a Gaussian peak in the

distribution

PTn
�Tn,N� � exp�−

�

2
N2bn

2 �Tn

N
−

	�n + 1/2�
��	�n + 1�


2�
�13�

from which one easily reads off the mean and variance of
integer moments

�Tn� =
N	�n + 1/2�
��	�n + 1�

, �14�

var�Tn� =
2

�bn
=

�	�n + 1/2��2

2��	�n�	�n + 1�
. �15�

To the best of our knowledge, the latter result, together with
its universal asymptotic value limn→� var�Tn�= �2���−1, has
not been reported previously in the literature.

As in the case of conductance and shot noise, there are
singular points separating the central Gaussian regime and
the non-Gaussian tails. However, the situation is more com-
plicated for n
1. Unlike in the conductance or the shot-
noise case where there are only two phase transitions sepa-
rating three regimes, there are more regimes for n
1. We
analyze here in detail the case n=2 where we show that there
are actually three singular points separating four regimes.
This is again a consequence of phase transitions in the asso-
ciated Coulomb gas problems where the average charge den-
sity undergoes abrupt changes at these critical points. It
would be interesting to see how many such phase transitions
occur for n
2. However, we do not have any simple way to
predict this and this remains an interesting open problem.
The tails of the distribution for the integer moments case can
be computed, in principle, for general n
1, and the formal-
ism is developed in Sec. VI, but for clarity we will focus
mostly on the case n=2. The left tail has again a power-law
decay for any n
1.
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III. SUMMARY OF THE COULOMB GAS METHOD

It is useful to summarize briefly the method we use to
compute the distribution of linear statistics in the large N
limit. Given a linear statistics of interest A=�i=1

N a�Ti�, its pdf
PA�A ,N�, using the joint pdf of Ti’s in Eq. �2�, is given by

PA�A,N� = AN�
0

1

. . .�
0

1

dT1, . . . ,dTN exp��

2 �
j�k

log�Tj − Tk�

+ ��

2
− 1	�

i=1

N

log Ti
���
i=1

N

a�Ti� − A
 . �16�

The main idea then is to work with its Laplace transform

FN�z;A� = �
0

�

dAPA�A,N�e−��/2�zA, �17�

where the variable z takes, in principle, complex values and
its dependence on N is at present unspecified.

Suppose one is able to compute the following limit:

JA�p� = −
2

�
lim
N→�

log FN�N�p;A�
N2 �18�

and such limit is finite and nonzero for a certain speed � and
for p�R such that p�O�1� for N→�. It is then a classical
result in large deviation theory �Gärtner-Ellis theorem, see,
e.g., Ref. 55, Appendix C� that the following finite nonzero
limit exists:

�A�x� = −
2

�
lim
N→�

log PA�N�x,N�
N2 �19�

and �A�x� �the rate function� is given by the inverse Leg-
endre transform of JA�p�

�A�x� = maxp�JA�p� − px� . �20�

Note that
�1� there is no need to consider complex values for z �and

thus for p� in Eq. �17�, as only real values matter for obtain-
ing the rate function. As PA�A ,N� has generically a compact
support, negative values for p are also allowed.

�2� Setting the appropriate speed � is evidently crucial for
obtaining a finite nonzero limit in Eq. �18�. There is no free-
dom here. Conversely, any speed is equally good when ex-
tracting the cumulants out of the Laplace transform, Eq. �17�,
�z=N�p� through the formula �set �=2 for simplicity�

���A� = �− 1

N� 	� ��

�p� log FN�N�p;A��p=0 �21�

as no limiting procedure is performed in Eq. �21�.
�3� The rate function �A�x� encodes the full information

about the probability distribution in the limit of infinitely
many open channels. However, our numerical simulations
confirm that it also gives a fairly accurate description of such
distribution for rather small N.

What is then the correct speed � for the linear statistics
considered here? It is quite easy to argue that � must be set
equal to 1. The reason is best understood by taking the con-
ductance G=�i=1

N Ti for �=2 as an example. By very general
arguments we expect the large N behavior of PG�G ,N� to
scale as PG�G ,N��e−N2�G�G/N� for large N. Clearly, the two
exponentials in Eq. �17� �the one coming from PG�G ,N� and
the other coming from the Laplace measure� must be of the
same order in N to guarantee a meaningful saddle point con-
tributions and since G�N for large N, clearly z�N as well.

After setting the proper speed, we get in full generality

�22�

We can write the exponential as, exp�−�E��Ti���
with E��Ti��=−�1 /2�� j�klog�Tj −Tk�+�iV�Ti� where V�T�
= �1 /�−1 /2�log�T�+ pNa�T� /2. This representation pro-
vides a natural Coulomb gas interpretation. We can identify
Ti’s as the coordinates of the charges of a two-dimensional
�2D� Coulomb gas that lives on a one-dimensional real
segment �0,1�. The charges repel each other via the 2D
logarithmic Coulomb potential and in addition, they sit
in an external potential V�T�. Note that the Laplace param-
eter p appears explicitly in the external potential V�T�.
Then E is the energy of this Coulomb gas. Thus one
can write the Laplace transform as the ratio of two partition
functions

FN�Np;A� = �
0

�

PA�A,N�e−��/2�NpAdA =
Zp�N�
Z0�N�

, �23�

where Zp�N� is precisely the multiple integral on the rhs of
Eq. �22� and Z0�N�=1 /AN �which simply follows by putting
p=0 in Eq. �22� and using the fact that the pdf PA�A ,N� is
normalized to unity�.

The next step is to evaluate this partition function Zp�N�
of the Coulomb gas in the large N limit. This procedure for
the large N calculation was originally introduced by Dyson19

and has recently been used in the context of the largest ei-
genvalue distribution of Gaussian45 and Wishart random
matrices53 and also in other related problems of counting
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stationary points in random Gaussian landscapes.46 There are
two basic steps involved. The first step is a coarse-graining
procedure where one sums over �partial tracing� all micro-
scopic configurations of Ti’s compatible with a fixed charge-
density function �p�T�=N−1�i��T−Ti� and the second step
consists in performing a functional integral over all possible
positive charge densities �p�T� that are normalized to unity.
Finally the functional integral is carried out in the large N
limit by the saddle-point method.

Following this general procedure summarized in Ref. 45
the resulting functional integral, to leading order in large N,
becomes

Zp�N� �� D��p�e−��/2�N2S��p�, �24�

where the action is given by

S��p� = p�
0

1

�p�T�a�T�dT + B��
0

1

�p�T�dT − 1

− �

0

1 �
0

1

dTdT��p�T��p�T��log�T − T�� . �25�

Here B is a Lagrange multiplier enforcing the normalization
of �p�T�. Note that the part of the potential �1 /�
−1 /2��ilog�Ti� is of O�N� and hence it drops out of the
action in Eq. �25� in the large N limit. In the large N limit,
the functional integral in Eq. �24� is particularly suitable to
be evaluated by the saddle point method,56 i.e., one finds the
solution �p

��T� �the equilibrium charge density that mini-
mizes the action or the free energy� from the stationarity
condition �S��p� /��p=0 which leads to an integral equation

Vext�T� = pa�T� + B = 2�
0

1

�p
��T��log�T − T��dT�, �26�

where Vext�T�= pa�T�+B is termed as external potential. Dif-
ferentiating once with respect to T leads to a singular integral
equation

p

2
a��T� = Pr�

0

1 �p
��T��

T − T�
dT�, �27�

where Pr denotes the principal part and a��T�=da /dT.
Assuming one can solve Eq. �27� for �p

�, one next evalu-
ates the action S��p� in Eq. �25� at the stationary solution �p

�

and then takes the ratio in Eq. �23� to get �upon comparison
with Eq. �18��

�
0

�

PA�A,N�e−��/2�NpAdA

FN�Np;A�

� e−��/2�N2�S��p
�� − S��0

��

JA�p�

�.

�28�

Inverting the Laplace transform gives the main asymptotic
result P�A ,N��exp�− �

2 N2�A� A
N �� where the rate function is

the inverse Legendre transform �see Eq. �20��

�A�x� = max
p

�− xp + JA�p�� �29�

with JA�p� given by the free-energy difference as in Eq. �28�.
To summarize, given any linear statistics a�T�, the steps

are: �i� solve the singular integral Eq. �27� for the density
�p

��T� �ii� evaluate the action S��p
�� in Eq. �25�, �iii� evaluate

JA�p�=S��p
��−S��0

��, and finally �iv� use JA�p� in Eq. �29�,
maximize the rhs to evaluate the rate function �A�x�. We
will see later that all these steps can be carried out fully and
explicitly when A=G �conductance� and A= P �shot noise�
and partially when A=Tn �integer moments�.

The important first step is to find the explicit solution of
the singular integral Eq. �27�. Note that this equation is of the
Poisson form and it is, in some sense, an inverse electrostatic
problem: given the potential pa��T�/2 on the l.h.s. of Eq.
�27�, we need to find the charge density �p

��T�. To proceed,
we recall a theorem due to Tricomi57 concerning the general
solution to singular integral equations of the form

g�x� = Pr�
a

b f�x��
x − x�

dx�, �30�

where g�x� is given and one needs to find f�x� which has
only a single support over the interval �a ,b� with a�b �the
lower edge a should not be confused with the linear statistics
function a�T��. The solution f�x�, with a single support over
�a ,b� can be found explicitly57

f�x� = −
1

�2��b − x��x − a�

��Pr�
a

b ��b − x���x� − a�
x − x�

g�x��dx� + B1
 , �31�

where B1 is an arbitrary constant.
In our case, g�x�= pa��x� /2 and provided we assume that

the charge density has a single support over �a ,b� with a
�b, we can, in principle, use this solution, Eq. �31�. How-
ever, if the solution happens to have a disconnected support
one cannot use this formula directly. Whether the solution
has a single or disconnected support depends, of course, on
the function a�T�. We will see that indeed for the case of
conductance �a�T�=T�, the solution has a single support and
one can use Eq. �31� directly. The edges a and b in that case
are determined self-consistently as explained in Sec. IV. On
the other hand, for the shot noise �a�T�=T�1−T�� and for
integer moments with n
1 �a�T�=Tn�, it turns out that for
certain values of the parameter p, the solution has a discon-
nected support. In that case, one cannot use Eq. �31� directly.
However, we will see later that one can still obtain the solu-
tion explicitly by an indirect application of Eq. �31�.

A very interesting feature of Eq. �27� is that, depending on
the value of the Laplace parameter p, the fluid of charged
particles undergoes a series of real phase transitions in
Laplace space, i.e., as one varies the Laplace parameter p,
there are certain critical values of p at which the solution
�p

��T� abruptly changes its form. As a consequence, the rate
function, related to the Laplace transform via the Legendre
transform in Eq. �29�, also undergoes a change in behavior as
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one varies its argument at the corresponding critical points.
The rate function is continuous at these critical points but it
has weak nonanaliticities �characterized by a discontinuous
third derivative�.

As an example, we consider the case of the conductance
�a�T�=T� �see Sec. IV for details�. In Fig. 2, we plot
schematically the saddle point density �p

��T� �solution of Eq.
�27� with a�T�=T�, for three different intervals on the real p
line. We will see in the next section that there are three
possible solutions valid respectively for p�4, −4� p�4,
and p�−4.

�1� When p�4, the external potential Vext�T�= pT+B is
strong enough �compared to the logarithmic repulsion� to
keep the fluid particles confined between the hard wall at T
=0 and a point L1=4 / p. The gas particles accumulate toward
T→0+, where the density develops an inverse square root
divergence, while �p

��L1�=0. This situation is depicted in the
left panel of Fig. 2;

�2� when p hits the critical value p�+�=4 from above, the
density profile changes abruptly. The external potential Vext
is no longer overcoming the logarithmic repulsion so the
fluid particles spread over the whole support �0,1� and the
density generically exhibits an inverse square root diver-
gence at both end points �T→0+ and T→1−�. This phase
keeps holding for all the values of p down to the second
critical point p�−�=−4 �see the second panel in Fig. 2�, when
the negative slope of the potential is so steep that the par-
ticles can no longer spread over the whole support �0,1� but
prefer to be located near the right hard edge at T=1.

�3� In the third phase �p�−4�, the fluid particles are
pushed away from the origin and accumulate toward the
right hard wall at T→1 �see the rightmost panel in Fig. 2�.
The density thus vanishes below the point L2=1–4 / �p�.

It is worth mentioning that such phase transitions in the
solutions of integral equations have been observed recently
in other systems that also allow similar Coulomb gas repre-
sentations. These include bipartite quantum-entanglement
problem,58 nonintersecting fluctuating interfaces in presence
of a substrate,49 and also multiple input multiple output
channels.59

IV. DISTRIBUTION OF THE CONDUCTANCE

We start with the simplest case of linear statistics, namely,
the conductance G=�i=1

N Ti. Thus in this case a�T�=T is sim-
ply a linear function. Substituting a�T�=T in Eq. �26�
gives

Vext�T� = pT + B = 2�
0

1

�p
��T��log�T − T��dT� �32�

and then Eq. �27� becomes

p

2
= Pr�

0

1 �p
��T��

T − T�
dT�. �33�

We have then to find the solution to Eq. �33�. Once this
solution �p

��T� is found, we can evaluate the action S��p
��

at the saddle point in the following way. Multiplying Eq. �32�
by �p

��T� and integrating �using the normalization
�0

1�p
��T�dT=1� gives

p�
0

1

T�p
��T�dT + B = 2�

0

1 �
0

1

�p
��T��p

��T��

�log�T − T��dTdT�. �34�

Next we use this result to replace the double integral term in
the action in Eq. �25� �with a�T�=T� to get

S��p
�� =

p

2
�

0

1

�p
��T�TdT −

B

2
. �35�

The yet unknown constant B is determined from Eq. �32�
upon using the explicit solution, once found.

To find the solution to Eq. �33� explicitly we will use the
general Tricomi formula in Eq. �31� assuming a connected
support over �a ,b�. The edges a and b will be determined
self-consistently. Physically, we can foresee three possible
forms for the density �p

��T� according to the strength and
sign of the external potential Vext�T�= pT+B on the left-hand
side of Eq. �32�.

�1� For large and positive p, the fluid particles �transmis-
sion eigenvalues� will feel a strong confining potential which
keeps them close to the left hard edge T→0+. Thus, �p

��T�
will have a support �0,L1� with 0�L1�1.

�2� For intermediate values of p, the particles will spread
over the full range �0,1�.

�3� For large and negative p, the fluid particles will be
pushed toward the right edge and the support of �p

��T� will
be over �L2 ,1� with 0�L2�1.

These three cases will correspond to different solutions
for the Tricomi Eq. �33� above and the positivity constraint
for the obtained densities will fix the range of variability for
p in each case. Once a solution �p

��T� for each case �different
ranges for p� is obtained, we can then use Eq. �35� to evalu-
ate the action at the saddle point. Let us consider the three
cases discussed above separately.

A. Large p: support on [0 ,L1]

We assume that the solution is nonzero over the support
�0,L1� based on our physical intuition for large p, where L1
is yet unknown. We use the general Tricomi solution with a
single support in Eq. �31� with a=0, b=L1, and g�x�= p /2
giving

FIG. 2. Phases of the density of transmission eigenvalues for the
conductance case.
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�p
��T� = −

1

�2�T�L1 − T�� p

2
Pr�

0

L1 �T��L1 − T��
T − T�

dT� + B1
 ,

�36�

where B1 is an arbitrary constant. Evaluating the principal
value integral on the rhs of Eq. �36� we get

�p
��T� =

p

2��T
�L1 − T , �37�

where the constant B1 has been determined using the fact that
the density �p

��T� must vanish at the upper edge T=L1. The
normalization of �p

��T� gives

L1 =
4

p
, L1 � 1 ⇒ p 
 4. �38�

As expected, this solution holds for large values of p �i.e., for
a strong confining potential�.

Since the point T=0 belongs to the support �0,L1�, we can
put T=0 in Eq. �32� to determine the constant B

B = 2�
0

1

�p
��T��log T�dT�. �39�

Substituting B in Eq. �35� gives the saddle-point action

S��p
�� =

p

2
�

0

1

�p
��T�TdT − �

0

1

�p
��T�log�T�dT . �40�

Performing the integrals using the explicit solution �p
��T� Eq.

�37� gives a very simple expression, valid for p
4

S��p
�� = 3/2 + log p . �41�

In Fig. 3 we show the results from a Monte Carlo simu-
lation to test the prediction Eq. �37� for the average density
of eigenvalues in Laplace space for p
4. The numerical
density for N eigenvalues �here and for all the subsequent
cases� is obtained as

�p
��x1� �

�e−pN�i=1
N xi
 j�k

�xj − xk�2�N−1

�e−pN�i=1
N xi
 j�k

�xj − xk�2�N

, �42�

where the average � · � is taken over N−1 random numbers
x2 , . . . ,xN �numerator� with a flat measure over �0,1� with x1
spanning the interval �0,1�. In the denominator, the normal-
ization constant is obtained with the same procedure, this
time averaging over N random variables uniformly drawn
from �0,1�. In all cases, the agreement with the theoretical
results is fairly good already for N=5.

B. Intermediate p: support on the full range (0,1)

In this case, the solution of Eq. �33� from Eq. �31� reads

�p
��T� =

p

2��T�1 − T�
�K − T� . �43�

The normalization of �p
��T� determines K= �4+ p� /2p. Now,

depending on whether p
0 or p�0, there are two positivity
constraints ��p

��T�
0 everywhere� to take into account:
�1� If p
0, the positivity constraint K−1
0 at the upper

edge T=1 implies p�4.
�2� If p�0, the positivity constraint K�0 at the lower

edge T=0 implies p
−4. Thus the solution in Eq. �43� with
support over the full allowed range �0,1� is valid for all
−4� p�4.

Substituting this solution into the simplified action in Eq.
�40� �which holds in this case as well� gives

S��p
�� = −

p2

32
+

p

2
+ 2 log 2. �44�

Note that since this range −4� p�4 includes, in particular,
the p=0 case, we can use the expression in Eq. �44� to evalu-
ate the value of the action at p=0 that will be required later
in evaluating the large deviation function via Eq. �28�. Put-
ting p=0 in Eq. �44� gives

S��0
�� = 2 log 2. �45�

In Fig. 4, we plot the analytical result for the density together
with Monte Carlo simulations for N=5 and p=1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

T

ρ* (T
)

FIG. 3. �Color online� Density of transmission eigenvalues T for N=5 and p=6 �theory vs numerics� for the conductance case.
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C. Large negative p: support on [L2 ,1]

In this case, the solution of Eq. �33� reads

�p
��T� =

�p�

2��1 − T
�T − L2, L2 = 1 −

4

�p�
. �46�

The implications for the p range are as follows:

L2 
 0 ⇒ p � − 4. �47�

Note that we can no longer use the expression for the
constant B in Eq. �39� since now the allowed range of the
solution �L2 ,1� does not include the point T=0. Instead, put-
ting T=1 in Eq. �32�, we determine the value of B as

B = 2�
0

1

�p
��x��log�1 − x��dx� − p . �48�

Substituting B in Eq. �35� we get a new expression for the
action at the saddle point

S��p
�� =

p

2
�

0

1

dTT�p
��T� − �

0

1

dT�p
��T�log�1 − T� +

p

2
.

�49�

Evaluating Eq. �49� using the solution in Eq. �46� gives the
saddle-point action for p�−4

S��p
�� = 3/2 + p + log�− p� . �50�

In Fig. 5, we plot the analytical result for the density together
with Monte Carlo simulations for N=5 and p=−6.

D. Comparison with other theories and numerical simulations

As summarized in the next section, we obtained for the
rate function of the conductance for �=2, defined as �see Eq.
�19��

�G�x� = − lim
N→�

log PG�Nx,N�
N2 �51�

the following expression �limited to x� �1 /2,1�, given the
symmetry �G�x�=�G�1−x��:

�G�x� = �8�x −
1

2
	2

1/2 � x � 3/4

1

2
− log�4�1 − x�� 3/4 � x � 1. � �52�

Osipov and Kanzieper �OK� claim40 a different limiting law,
namely,
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FIG. 4. �Color online� Density of transmission eigenvalues T for N=5 and p=1 �theory vs numerics� for the conductance case.
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FIG. 5. �Color online� Density of transmission eigenvalues T for N=5 and p=−6 �theory vs numerics� for the conductance case.
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�G
OK�x� = �8�x −

1

2
	2

1/2 � x � 3/4

4x −
5

2
3/4 � x � 1 � �53�

and �G
OK�x� would approach the form in Eq. �52� �second

line� only at the extreme edge x→1− �over a narrow region
of order 1 /N�.

Which law is then correct? There is a conclusive way to
settle this dispute, namely, to compare the two theoretical
results to a direct numerical simulation of PG�G ,N�. We will
present simulation results in Laplace space which agree very
well with our result on the Laplace transform �see Fig. 6, left
panel, and Eqs. �65� and �70� in next section� over the full
range of real p values, as well as a convincing comparison
with the exact finite N result for the same observable using
the Hankel determinant representation in Eq. �59� from Ref.
40 �see Fig. 6, right panel�. We shall argue below that OK
asymptotic theory is indeed unable to reproduce the tails of
JG�p� for �p�
4, which are responsible for long power-law
tails in the rate function �G�x�. Since, however, working in
the Laplace space may not appear conclusive as far as the
real-space rate function �G�x� is concerned, it would be bet-
ter if one could perform a simulation directly for PG�G ,N�
and not just for its Laplace transform. Indeed, it turns out to
be quite easy to simulate directly PG�G ,N� using an elemen-
tary and standard Monte Carlo Metropolis algorithm which
we describe below.

Monte-Carlo method

The main problem is to compute the distribution of the
conductance G which, for a fixed number of channels N and
�=2, is given by the multiple integral

PG�G,N� = AN�
0

1



i=1

N

dTi

i�j

�Ti − Tj�2���
i=1

N

Ti − G	 ,

�54�

where the prefactor AN is set by the normalization:
�0

�PG�G ,N�dG=1 and is known exactly for all N �see Eq.
�3��.

To employ the Monte Carlo method, we first write the
integrand �the Vandermonde term� in Eq. �54�



i�j

�Ti − Tj�2 = e−E�Ti�; E�Ti� = − �
i�j

ln��Ti − Tj�� . �55�

Thus, one can interpret 0�Ti�1 as the position of an
ith charge in a one-dimensional box �0,1� and the charges
interact via the logarithmic Coloumb energy −E�Ti�. This
Coulomb gas is in thermal equilibrium with a Gibbs weight
exp�−E�Ti�� for any configuration �Ti�, where the inverse
temperature is set to 1.

It is then very easy and standard to simulate the equilib-
rium properties of this gas via a Monte Carlo method.60 We
start from any configuration �Ti�. We pick a particle, say the
ith one, at random and attempt to move its position by an
amount �: Ti→Ti+�. This move causes a change in energy
�E of the gas. According to the standard Metropolis
algorithm,60 the move is accepted with probability e−�E if
�E
0 and with probability 1 if �E�0. The move is re-
jected if the new position Ti+� is outside the box �0,1�. This
Metropolis move guarantees that after a large number of mi-
croscopic moves, the system reaches the stationary distribu-
tion with the correct Boltzmann weight e−E�Ti�.

We wait for a long enough time to ensure that the system
has indeed reached equilibrium. After that we let the system
evolve according to these microscopic moves and construct
the normalized histogram PG�G ,N� of G=�i=1

N Ti. Once
again, we are guaranteed that Ti’s are sampled with the cor-
rect equilibrium weight. This procedure allows us to simulate
fairly large systems. To obtain good statistics for the distri-
bution over the full range of x=G /N, i.e., over 1 /2�x�1,
we implement an iterative conditional sampling method,
used in other contexts before,51 that allows us to generate
events with extremely small probabilities at the far tail of the
distribution.61

In Fig. 7, we plot ��x�=−ln�PG�G ,N�� /N2 vs the scaling
variable x=G /N for 1 /2�x�1 for N=50. The black dots
show the simulation points. The red �solid� line shows our
Vivo-Majumdar-Bohigas �VMB� result in Eq. �52� while the
blue �dashed� line shows the OK prediction, Eq. �53�.
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FIG. 6. �Color online� Left: JG�p� and JQ�p� vs Monte Carlo simulations �see Eqs. �70� and �80��. Right: our asymptotic predictions JG�p�
�solid red line� is compared with the exact finite N expression �59� from Ref. 40 for N=4 �green squares� and N=10 �blue dots�. Already for
N=4, our large N formula again matches the exact finite N result with accuracy up to the second decimal digit over the full real p range.
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Clearly the two results agree with each other, as well as with
the simulations, in the Gaussian regime 1 /2�x�3 /4. How-
ever, in the outer region 3 /4�x�1 while the VMB result in
Eq. �52� is in perfect agreement with the simulation results,
the OK result in Eq. �53� deviates widely from them. This
proves conclusively that in the regime 3 /4�x�1, the VMB
result in Eq. �52� is correct and the OK result in Eq. �53� is
incorrect.

There is another way to see that the OK asymptotics can-
not be correct. Since OK theory stems from the asymptotic
analysis of the following integral representation for the prob-
ability distribution of conductance �see Eq. 22 of Ref. 40�:

PG
�OK��G,N� =

2N1/4

	�1/8�
� 2

�
�

0

�

d

e−N2�
+2�2/�1+2
��


7/8�1 + 2

,

�56�

where �=2�G /N�−1, we can now compute from Eq. �56�
the same observable we considered here, namely,

JG�p� = − lim
N→�

log FN�Np;G�
N2 �57�

for p�R and p�O�1� for N→� �see Eqs. �17� and �18��,
and thus compare once again the large N predictions of VMB
and OK theories against �i� numerical simulations and �ii� the
exact finite N result, which is fortunately available �see Fig.
6�.

Inserting Eq. �56� into the definition of the Laplace trans-
form in Eq. �17�, we obtain after simple algebraic steps

FN�Np;G� =
N1/4

��1/8�
exp�− N2� p

2
−

p2

32
��

� �
0

�

d�
e−N2��1−p2/16�

�7/8

�N�p�

.

�58�

The integral �N�p� clearly does not converge for �p��4 with
the consequence that OK integral representation in Eq. �56�
fails to reproduce the tails of both �1� Monte Carlo simula-
tions of JG�p� �see Fig. 6, left panel� and �2� the exact finite
N result40 for the Laplace transform in terms of a Hankel
determinant �see Fig. 6, right panel�

FN�Np;G� =
N!

cN
det��− �z� j+k�1 − e−z

z
�

z=Np



0�j,k�N−1
,

cN = 

j=0

N−1
	�j + 2�	2�j + 1�

	�j + N + 1�
, �59�

which evidently do exist and are perfectly captured instead
by our approach in both cases.

Within the range of validity �p��4, the integral �N�p� can
be evaluated and gives eventually

FN�Np;G� =
exp�− N2�p/2 − p2/32��

�1 − p2/16�1/8 , if �p� � 4.

�60�

Note that all N dependence has completely dropped out from
the prefactor, leaving us with two perfectly compatible �even
though apparently discordant at first glance� consequences:

�1� according to OK theory, the limit

JG�p� = − lim
N→�

log FN�Np;G�
N2 = p/2 − p2/32 for �p� � 4,

�61�

which is correct but incomplete �as their integral has nothing
to say about the tails �p��4�.

�2� Not surprisingly then, from the OK theory, the leading
�1 /N� order of the cumulants of the distribution, computed
through the formula �21�
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FIG. 7. �Color online� Comparison between Montecarlo simulations for the rate function ��x�=−limN→� log PG�Nx ,N� /N2 as a function
of x=G /N for �=2 �black dots�, our asymptotic theory �VMB� �continuous red line� and the theory by OK �dashed blue line�. Simulations
are performed for N=10 �left� and N=50 �right�, which allows to appreciate the convergence to our theoretical curve as N is increased.
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���G� = �− 1

N
	� ��

�p� log FN�Np;G��p=0 �62�

is correctly reproduced �see also Ref. 39 for an independent
calculation of such cumulants, which is in perfect agreement
with OK result�.

In summary, the OK integral representation in Eq. �56� is
only adequate around the Gaussian peak �the p=0 neighbor-
hood in Laplace space, which is exactly the only region
which cumulants probe, see Eq. �62�� and in this neighbor-
hood it has the merit of producing the correct leading 1 /N
term of the expansion of such cumulants �unattainable by our
method� and confirmed independently in Ref. 39. Outside

this region, however, the OK integral representation is in-
valid and the asymptotic analysis of it outside its range of
validity obviously produces an incorrect result. Note also
that, for any fixed N �however large�, one has from Eq. �56�
that PG

�OK��G=0,N�=PG
�OK��G=N ,N�
0 strictly while it is

well known that the density must vanish identically at the
edges38,39,54 for any N. This simple observation rules out the
claims of exactness of Eq. �56� in Ref. 40.

E. Final results for the conductance case

To summarize, the density of eigenvalues �solution of the
saddle point Eq. �33�� has the following form:

�p
��T� =�

p

2��T�1 − T�
�4 + p

2p
− T
 0 � T � 1 − 4 � p � 4

p

2��T
�4

p
− T 0 � T � 4/p p � 4

�p�

2��1 − T
�T − �1 – 4/�p�� 1 – 4/�p� � T � 1 p � − 4.

� �63�

One may easily check that �p
��T� is continuous at p= �4 but

develops two phase transitions characterized by different
supports.

The action at the saddle point is given by

S��p
�� = �−

p2

32
+

p

2
+ 2 log 2 − 4 � p � 4

3/2 + log p p � 4

3/2 + p + log�− p� p � − 4,
� �64�

which is again continuous at p= �4.
Using the above expressions for the saddle point action

and the result in Eq. �45�, the expression for the free-energy
difference JG�p�=S��p

��−S��0
�� follows from Eq. �28�

JG�p� = �−
p2

32
+

p

2
− 4 � p � 4

3/2 + log�p/4� p � 4

3/2 + p + log�− p/4� p � − 4.
� �65�

Using this expression for JG�p� in the Legendre transform in
Eq. �29� and maximizing gives the exact expression for the
rate function

�G�x� =�
8�x −

1

2
	2 1

4
� x �

3

4

1

2
− log�4x� 0 � x �

1

4

1

2
− log�4�1 − x��

3

4
� x � 1.

� �66�

From this formula, one can derive the leading behavior of the
tails of PG�G ,N� as

PG�G,N� �
G→0

exp�−
�

2
N2�− log�4G/N��� = G�N2/2,

�67�

PG�G,N� �
G→N

exp�−
�

2
N2�− log�4�1 − G/N���	 = �N − G��N2/2

�68�

in agreement with Refs. 38, 39, and 54.
The most interesting feature of Eq. �66� is the appearance

of discontinuities in higher-order derivatives at the critical
points: more precisely, the third derivative of �G�x� is dis-
continuous at x=1 /4 and x=3 /4. In fact, Sommers et al.38

found that for finite N1 ,N2 there are several nonanalytical
points. Only two of them survive to the leading order N
→� and, in our picture, these correspond to a physical phase
transition in Laplace space.
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In summary, the following exact limit holds:

lim
N→�

�−
2 log PG�Nx,N�

�N2 
 = �G�x� , �69�

where the rate function �G�x� is given in Eq. �66�.
The free energy difference in Laplace space Eq. �65� for

large N has been compared with:
�1� Monte Carlo simulations over the range p= �−30,30�,

which already for N=5 show an excellent agreement �see
Fig. 6, left panel�. For a given p between −30 and 30, the
numerical JG�p� �and analogously for JQ�p�� is computed as

JG�p� �
�e−pN�i=1

N xi
 j�k�xj − xk�2�N

�
 j�k�xj − xk�2�N

, �70�

where the average is taken over N random variables �xi�
drawn from a uniform distribution over �0,1�.

�2� The exact finite N result from Ref. 40 for the Laplace
transform of the density in terms of a Hankel determinant
�see Eq. �59��. In Fig. 6 �right panel�, we plot our asymptotic
result JG�p�, Eq. �65�, together with −log FN�Np ;G� /N2,
where FN�Np ;G� is the exact finite N result, Eq. �59�, for the
Laplace transform from Ref. 40 for −30� p�30 and N
=4,10. Already for N=4, our JG�p� reproduces the exact
finite N formula with an accuracy of two decimal digits.

V. DISTRIBUTION OF THE SHOT NOISE

The dimensionless shot noise is defined as P=�i=1
N Ti�1

−Ti�.7,8 It is convenient to rewrite it in the form P=N /4
−�i=1

N �1 /2−Ti�2=N /4−Q. The probability distributions of P
and Q are related by

PP�P,N� = PQ�N

4
− P,N	 . �71�

It is also necessary to make the change of variables in the
joint pdf, Eq. �2�, �i=1 /2−Ti so that −1 /2��i�1 /2. The
joint pdf, Eq. �2�, expressed in terms of the new variables �i
reads

P��1, . . . ,�N� = AN

j�k

�� j − �k��

i=1

N �1

2
− �i	��/2�−1

�72�

and we are interested in the large N decay of the logarithm of
PQ�Q ,N�, where Q=�i�i

2. We have

PQ�Q,N� = AN�
−1/2

1/2

. . . �
−1/2

1/2

d�1 . . . d�N

�exp��

2 �
j�k

log�� j − �k�

+ ��

2
− 1	�

i=1

N

log�1

2
− �i	
���

i=1

N

�i
2 − Q	 .

�73�

Again, taking the Laplace transform and converting multiple
integrals to functional integrals we obtain

�
0

�

PQ�Q,N�e−��/2�NpQdQ = AN� D���e−��/2�N2S��p�,

�74�

where for notational simplicity we keep the same symbols �p
and S as before. Of course, the new action S reads

S��p� = p�
−1/2

1/2

�p����2d�

− �
−1/2

1/2 �
−1/2

1/2

d�d���p����p����log�� − ���

+ C��
−1/2

1/2

�p���d� − 1
 , �75�

where C is the new Lagrange multiplier enforcing the nor-
malization of the charge density to unity.

The stationary point of the action S is determined by

�S��p�
��p

= 0 �76�

yielding

p�2 + C = 2�
−1/2

1/2

d���p
�����log�� − ��� . �77�

Taking one more derivative with respect to �, we get to the
following Tricomi equation:

p� = Pr�
−1/2

1/2 �p
�����

� − ��
d��. �78�

In terms of the solution �p
���� of Eq. �78�, the action in Eq.

�75� can be simplified as

S��p
�� =

p

2
�

−1/2

1/2

�p
�����2d� −

C

2
, �79�

where the value of the constant C is determined from Eq.
�77� by attributing a value to � within the support of the
solution. As in the conductance case, we can write the
asymptotic decay of Q as

�
0

�

PQ�Q,N�e−��/2�NpQdQ � exp�−
�

2
N2�S��p

�� − S��0
����

= exp�−
�

2
N2JQ�p�
 . �80�

Again, in order to solve Eq. �78� we need first to foresee the
structure of the allowed support for �p

����. This time, the
symmetry constraint �p

����=�p
��−�� reduces the possible

behaviors of �p
���� to the following three cases: �I� �p

����
has compact support �−L ,L� with L�1 /2, �II� �p

���� has
noncompact support �−1 /2,1 /2�, or �III� the support of
�p

���� is the union of two disjoint semicompact intervals
�−1 /2,−L�� �L ,1 /2� with L
0 �see Fig. 8�. We analyze the
three cases separately.
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A. Support on [−L ,L] with L�1 Õ2

The general solution of Eq. �78� in this case is given by

�p
���� =

p

��L2 − �2
�c1 − �2� . �81�

The constant c1 is clearly determined as c1=L2 by the con-
dition that �p

���L�=0. Thus, the solution within the bounds
�−L ,L� with L�1 /2 is the semicircle

�p
���� =

p

�
�L2 − �2, �82�

where the edge point L is determined by the normalization
condition �−L

L �p
����d�=1. This gives

L =�2

p
, L � 1/2 ⇒ p 
 8. �83�

So, eventually �see Fig. 9�

�p
���� =

p

�
�2

p
− �2, −�2

p
� � ��2

p
, p 
 8.

�84�

Evaluating the action in Eq. �79� �after determining the con-
stant C from Eq. �77� by putting �=0 there� we get for p

8

S��p
�� =

3

4
+

1

2
log 2 +

1

2
log p . �85�

From Eq. �80�, the value of JQ�p�=S��p
��−S��0

�� �still using
S��0

��=2 log 2� for p�8 is given by

JQ�p� =
3

4
+

1

2
log� p

8
	 . �86�

Again, the rate function �Q�x� is given by the inverse Leg-
endre transform of Eq. �86�, i.e.,

�Q�x� = max
p

�− xp + JQ�p�� =
1

4
− 2 log 2 −

1

2
log x

�87�

valid for 0�x�1 /16. From Eq. �71�, we have the following
relation among the rate functions for Q and P:

�P�x� = �Q�1

4
− x	 �88�

implying for �P�x� the following expression:

�P�x� =
1

4
− 2 log 2 −

1

2
log�1

4
− x	 for

3

16
� x �

1

4
.

�89�

In Fig. 9 we plot the theoretical density of shifted transmis-
sion eigenvalues together with Montecarlo simulations for
N=6 and p=12.

B. Support on (−1 Õ2,1 Õ2)

The general solution of Eq. �78� in this case is given by

�p
���� =

p

��1/4 − �2
�b1 − �2� . �90�

The constant b1 is determined by the normalization condition
�−1/2

1/2 �p
����d�=1. This gives b1=1 / p+1 /8. In turn, the posi-

tivity constraint for the density implies −8� p�8. We then
get

�p
���� =

p

��1/4 − �2�1

p
+

1

8
− �2
,

for −
1

2
� � �

1

2
, − 8 � p � 8. �91�

Evaluating the action in Eq. �79� gives for −8� p�8

FIG. 8. Density of the auxiliary Q �schematic�.
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FIG. 9. �Color online� Density of shifted transmission eigenvalues � for N=6 and p=12 �theory vs numerics� for the shot noise case.
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S��p
�� =

p

8
−

p2

256
+ 2 log 2. �92�

From Eq. �80�, the value of JQ�p�=S��p
��−S��0

�� for −8� p
�8 is given by

JQ�p� = −
p2

256
+

p

8
. �93�

Again, the rate function �Q�x� is given by the inverse Leg-
endre transform of Eq. �93�, i.e.,

�Q�x� = max
p

�− xp + JQ�p�� = 64�x −
1

8
	2

�94�

valid for 1 /16�x�3 /16. From the relation in Eq. �88�, we
have for �P�x� the following expression:

�P�x� = 64�1

8
− x	2

for
1

16
� x �

3

16
. �95�

In Fig. 10 we plot the theoretical density of shifted trans-
mission eigenvalues together with Montecarlo simulations
for N=6 and p=1.

C. Support on (−1 Õ2,−L]  [L ,1 Õ2)

For large negative values of p, we envisage a form for the
charge density as in Fig. 8 �rightmost panel�, i.e., on a dis-
connected support with two connected and symmetric com-
ponents. This is because for large negative p, the external
potential p�2 in Eq. �77� tends to push the charges to the two
extreme edges of the box 0 and 1, creating an empty space in
the middle. Since we expect to have a disconnected support,
we cannot directly use the single support Tricomi solution,
Eq. �31�. We need to proceed differently.

We start by recasting Eq. �78� in the following form:

p� = �
−1/2

−L �p
�����

� − ��
d�� + Pr�

L

1/2 �p
�����

� − ��
d�� � 
 0,

�96�

p� = Pr�
−1/2

−L �p
�����

� − ��
d�� + �

L

1/2 �p
�����

� − ��
d�� � � 0.

�97�

In the rhs of Eq. �96� �first integral� we make the change of
variables ��→−��, getting

p� = �
L

1/2 �p
��− ���
� + ��

d�� + Pr�
L

1/2 �p
�����

� − ��
d��. �98�

Exploiting the symmetry �p
����=�p

��−��, we get

p� = Pr�
L

1/2

d���p
������ 1

� + ��
+

1

� − ��



= 2� Pr�
L

1/2

d��
�p

�����
�2 − ��2 . �99�

Making a further change of variables �2=y , ��2=y� we get
eventually a Tricomi equation for �̃p���=�p

����� /�� as

p = Pr�
L2

1/4

dy�
�̃p�y��
y − y�

. �100�

Solving Eq. �100� by the standard one support solution, Eq.
�31� and converting back to �p

���� we get

�p
���� =

�p���a2 − �2�

���1/4 − �2���2 − L2�
, �101�

where a2 is an arbitrary constant, fixed by the condition
�p

���L�=0 �the density is vanishing at the edge points�. This
gives a2=L2. Imposing the normalization condition, we get
L2=1 /4−2 / �p�. The condition that L�0 implies that this so-
lution is valid when p�−8. Thus for p�−8, we then get

�p
���� =

�p����2 − 1/4 + 2/�p�

��1/4 − �2
. �102�

Note that, when p→−8 from below, the equilibrium solu-
tion, Eq. �102�, smoothly matches the solution in Eq. �91� in
the intermediate regime. The action is readily evaluated from
Eq. �79� as
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FIG. 10. �Color online� Density of shifted transmission eigenvalues � for N=6 and p=1 �theory vs numerics� for the shot noise case.
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S��p
�� = p�

L

1/2

d��2�p
���� − 2�

L

1/2

d��p
����log �

=
3

4
+

1

2
log��p�� −

�p�
4

+
1

2
log 2. �103�

The corresponding JQ�p� is given by

JQ�p� =
3

4
+

1

2
log� �p�

8
	 −

�p�
4

�104�

from which the rate function �Q�x� can be easily derived

�Q�x� = max
p

�− xp + JQ�p�� =
1

4
− 2 log 2 −

1

2
log�1

4
− x	

3/16 � x � 1/4. �105�

In Fig. 11 we plot the theoretical density of shifted trans-
mission eigenvalues together with Monte Carlo simulations
for N=4 and p=−9.

D. Final results for the shot-noise case

To summarize, the density of the shifted eigenvalues ��i�
�solution of the saddle point Eq. �78�� has the following
form:

�p
���� =�

p

�
�2

p
− �2 −�2

p
� � ��2

p
p � 8

p

��1/4 − �2�8 + p

8p
− �2
 − 1/2 � � � 1/2 − 8 � p � 8

�p����2 − 1/4 + 2/�p�

��1/4 − �2
− 1/2 � � � − �1/4 − 2/�p� ∨ �1/4 − 2/�p� � � � 1/2 p � − 8.

� �106�

One may easily check that �p
���� is continuous at p= �8 but

develops two phase transitions characterized by different
supports.

The saddle-point action in Eq. �79� is given by

S��p
�� =�

3

4
+

1

2
log 2 +

1

2
log p p 
 8

p

8
−

p2

256
+ 2 log 2 − 8 � p � 8

3

4
+

1

2
log��p�� −

�p�
4

+
1

2
log 2 p � − 8,

�
�107�

which is again continuous at p= �8.

From Eq. �28�, the expression of JQ�p�=S��p
��−S��0

�� is

JQ�p� =�
3

4
+

1

2
log� p

8
	 p � 8

− p2

256
+

p

8
− 8 � p � 8

3

4
+

1

2
log� �p�

8
	 −

�p�
4

p � − 8
� �108�

from which one can derive �in complete analogy with the
conductance case� the rate function for the auxiliary quantity
Q
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FIG. 11. �Color online� Density of shifted transmission eigenvalues � for N=4 and p=−9 �theory vs numerics� for the shot noise case.
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�Q�x� =�
1

4
− 2 log 2 −

1

2
log x 0 � x � 1/16

64�x −
1

8
	2

1/16 � x � 3/16

1

4
− 2 log 2 −

1

2
log�1

4
− x	 3/16 � x � 1/4

�
�109�

and from the relation �P�x�=�Q�1 /4−x� one readily obtains
the rate function for the shot noise in Eq. �10�.

VI. DISTRIBUTION OF MOMENTS Tn FOR INTEGER n

In this section, we deal with the more general case of
integer moments Tn=�i=1

N Ti
n, in particular, focusing on the

case n=2. The conductance is exactly given by T1 while the
shot noise is T1−T2. While we could use the general method
outlined in Sec. III with the choice a�T�=Tn, as was done for
the conductance case �n=1�, it turns out that one can obtain
the same final results by using a shortcut which combines, in
one step, the saddle point evaluation in Eq. �26� and the
maximization of the Legendre transform in Eq. �29�. Of
course, both methods finally yield the same results but this
shortcut explicitly avoids any Laplace inversion. Here, we
illustrate the shortcut method for the case a�T�=Tn but it can
also be used for other linear statistics.

The distribution of the moments PTn
�Tn=Nt ,N� is given

by

PTn
�Tn = Nt,N� = AN�

0

1

. . . �
0

1

dT1 . . . dTN

�exp��

2 �
j�k

log�Tj − Tk�

+ ��

2
− 1	�

i=1

N

log Ti
���
i=1

N

Ti
n − Nt	 . �110�

The shortcut consists in replacing the delta function by its
integral representation: ��x�=� dp

2�epx where the integral runs
in the complex p plane. The rest is as before, namely, that in
the large N limit, one replaces the multiple integral by a
functional integral introducing a continuous charge density
�p�x�. This gives

PTn
�Tn = Nt,N� = AN� dp

2�
D���e−��/2�N2S��p�, �111�

where the action is given by

S��p� = p��
0

1

�p�x�xndx − t

− �

0

1 �
0

1

dxdx��p�x��p�x��log�x − x��

+ C��
0

1

�p�x�dx − 1
 , �112�

where the rhs of Eq. �111� is now extremized with respect to
both ��x� and p. Notice that here we have already performed
the inverse Laplace transform of Eq. �23�. Hence the two
methods are exactly identical.

Extremizing the action gives the following saddle-point
equations:

pxn + C = 2�
0

1

dx��p
��x��log�x − x�� , �113�

t = �
0

1

dxxn�p
��x� , �114�

which in turn determine p as a function of t.
Multiplying Eq. �113� by �p

��x� and integrating over x, the
action at the saddle point can be rewritten in the more com-
pact form

S��p
�� = −

1

2
�pt + C� , �115�

where, as before, the constant C has to be determined from
Eq. �113� by using a suitable value of x which is included in
the support of the solution. For large N, Eq. �111� gives

PTn
�Tn = Nt,N� � exp�−

�

2
N2�S��p

�� − S��0
���


= exp�−
�

2
N2�Tn

�t�
 , �116�

where the rate function is given by

�Tn
�t� = S��p

�� − S��0
�� = S��p

�� − 2 log 2 �117�

having used again S��0
��=2 log 2 from Eq. �45�.

Upon differentiation of Eq. �113�, we obtain the Tricomi
equation for �p

��x�

n
p

2
xn−1 = Pr�

0

1 �p
��x��dx�

x − x�
�118�

to be solved for different supports of �p
��x� as one varies the

argument t and consequently the parameter p. As usual, de-
pending on the value of p, we need to first anticipate the
“type” of the solution, i.e., the form of its support and then
verify it a posteriori, as illustrated below.

A. Large p: support on (0 ,Lp]

Consider first the case when p is very large. Since the
external potential in Eq. �113� is of the form pxn+C which is
rather steep for large p, we anticipate that the charge fluid
will be pushed toward the left hard edge at x=0. In this case,
the general solution of Eq. �118� with the restriction n�N is
given by
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�p
��x� = −

1

�2�x�Lp − x�

� �1

2
Pr�

0

Lp �x��Lp − x��np�x��n−1dx�

x − x�
+ C1
 ,

�119�

where C1 is an arbitrary constant. Evaluating the principal
value integral yields

�p
��x�=−

1

�2�x�Lp − x�

��− npLp
n��	�n − 1/2�
4	�n + 1� 2F1�1,−n;3/2−n;

x

Lp
	+C1
,

�120�

where 2F1�a ,b ;c ;x� is a hypergeometric function, defined by
the series

2F1�a,b;c;x� = 1 +
ab

c
x +

a�a + 1�b�b + 1�
c�c + 1�

x2

2!
+ ¯ .

�121�

Determining the constant C1 by the requirement that
�p

��Lp�=0, we obtain

�p
��x� =

1

��2n − 1��x�Lp − x�

��2F1�1,− n;3/2 − n;x/Lp� + 2n − 1� . �122�

The edge point Lp is finally determined by the normalization
requirement �0

Lp�p
��x�dx=1, yielding after some elementary

algebra

Lp = �2��	�n�/�p	�n + 1/2���1/n. �123�

Imposing now Eq. �114� as

1

��2n − 1���0

Lp dxxn

�x�Lp − x�

��2n − 1 + 2F1�1,− n;3/2 − n;x/Lp��� = t �124�

we obtain a very simple relation between p and t

p =
1

tn
. �125�

Armed with Eqs. �125� and �122�, we can now evaluate the
action in Eq. �115� eliminating p as

S��p
�� =

1

2n
+ log� 4

Lp
	 =

1

2n
+ 2 log 2

+
1

n
log� 	�n + 1/2�

2��	�n + 1�
t−1
 . �126�

Equation �122� is valid as long as Lp�1 �the edge point
of the support such that �p

��Lp�=0�. From Eq. �123�, putting
Lp=1, one thus finds that the solution is valid for p
 p1

�

where

p1
� =

2��	�n�
	�n + 1/2�

. �127�

Consequently, from Eq. �125�, it follows that the solution is
valid for t� t1

�, where

t1
� =

	�n + 1/2�
2��	�n + 1�

. �128�

As a check, for n=1 we have t1
�=1 /4 from Eq. �128�,

Lp=4 / p=4t from Eqs. �123� and �125� and the condition
Lp�1 implies t� t1

�=1 /4 as expected �compare with Sec.
IV A�. For n=2, we have t1

�=3 /16 and p1
�=8 /3. For n=2,

this regime �t� t1
�=3 /16 and hence p
 p1

�=8 /3� corresponds
to the leftmost panel in Fig. 16.

In this region of t, the rate function is easily computed as

�Tn
�t� = S��p

�� − 2 log 2

=
1

n�1

2
+ log� 	�n + 1/2�

2��	�n + 1�

 − log t� . �129�

Combining Eq. �129� with Eq. �116�, one obtains as a new
result the precise left tail asymptotics for the nth integer
moment distribution

PTn
�Tn = Nt,N� � exp��N2

2n
log t	 = t�N2/2n. �130�

In Fig. 12 we plot the theoretical density of eigenvalues
for the n=2 case together with Montecarlo simulations with
N=5 and p=5.

B. Intermediate p: support on (0,1)

We now look for the solution of
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FIG. 12. �Color online� Density of eigenvalues x for N=5 and
p=5 �theory vs numerics� for n=2.
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n
p

2
xn−1 = Pr�

0

1 �p
��x��

x − x�
dx� �131�

with a nonzero support over the full allowed range �0,1�.
Using the general solution in Eq. �31� with the choice a=0
and b=1 we get

�p
��x� =

np	�n − 1/2�
4	�n + 1��3/2� 2F1�1,− n;3/2 − n;x� − Cn

�x�1 − x�

 ,

�132�

where Cn is an arbitrary constant to be fixed by �0
1�p

��x�dx
=1, yielding

Cn = −
4��	�n�

p	�n − 1/2�
�133�

so eventually

�p
��x� =

p	�n − 1/2�
4	�n��3/2 � 2F1�1,− n;3/2 − n;x� +

4��	�n�
p	�n − 1/2�

�x�1 − x�
� .

�134�

Next, we need to impose the condition �114�

t = �
0

1

dxxn�p
��x� �135�

leading to

t =
	�n + 1/2�
��	�n + 1�

�1 +
p	�n − 1/2�

8��	�n�
�1 − 2n�
 . �136�

From Eq. �136� we can derive the relation between p and t as

p = an − bnt , �137�

where

an =
4��	�n�

	�n + 1/2�
, �138�

bn =
4�	�n�	�n + 1�

�	�n + 1/2��2 . �139�

Inserting Eqs. �137� and �134� into Eq. �115�, we obtain,
after a few steps of algebra, the action

S��p
�� =

bn

2 �t −
	�n + 1/2�
��	�n + 1�


2

+ log 4. �140�

Next we need to determine the range of validity of this
solution. This is obtained simply by the fact that the density
�p

��x� in Eq. �132� must be positive. Let us first rewrite the
solution in Eq. �132� as

�p
��x� =

1

�

Ap�x�
�x�1 − x�

, �141�

where

Ap�x� = 1 +
p	�n − 1/2�

4��	�n� 2F1�1,− n;3/2 − n;x� . �142�

To ensure �p
��x��0, we have to just ensure that Ap�x��0 in

Eq. �142�. How does Ap�x� vary as a function of x in x
� �0,1�? It can be easily seen that this function has a global
minimum at some intermediate value 0�x��1. To ensure
its positivity, we then have to ensure that Ap�x���0. This
will be true only for a range of values of p, i.e., when p2

�

� p� p1
� �where p1

� is precisely the lower edge of the validity
of regime I in the previous section and is given in Eq. �127��.
Consequently, using Eq. �137�, this sets a t range t1

�� t� t2
�

for the validity of this regime II, where t1
� is given in Eq.

�128�. Now, for arbitrary n, p2
�, and consequently t2

� have
rather complicated expressions which we do not detail here.
But for n=2, their expressions are rather simple and we get

p2
� = −

16

3
and t2

� =
3

4
. �143�

This then defines regime II with a full support over �0,1�,
namely, −16 /3� p�8 /3 and consequently 3 /16� t�3 /4, is
shown as the second �from the left� region in Fig. 16.

Thus in this regime II where t1
�� t2

�, the rate function, for
arbitrary n, has a quadratic form

�Tn
�t� = S��p

�� − log 4 =
bn

2 �t −
	�n + 1/2�
��	�n + 1�


2

�144�

thus implying Eq. �13�

PTn
�Tn,N� � exp�−

�

2
N2bn

2 �Tn

N
−

	�n + 1/2�
��	�n + 1�


2� .

�145�

In Fig. 13 we plot the theoretical density of eigenvalues
for the n=2 case together with Monte Carlo simulations with
N=6 and p=1. From the Gaussian shape in Eq. �145�, the
mean and variance of Tn can be read off very easily

0 0.2 0.4 0.6 0.8 1
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FIG. 13. �Color online� Density of eigenvalues x for N=6 and
p=1 �theory vs numerics� for n=2.
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�Tn� =
N	�n + 1/2�
��	�n + 1�

, �146�

var�Tn� =
2

�bn
=

�	�n + 1/2��2

2��	�n�	�n + 1�
. �147�

Novaes26 recently computed the average of integer moments
and obtained the following expression for arbitrary n�N:

�Tn� = N�2n

n
	4−n. �148�

Using elementary properties of Gamma functions, it is easy
to show that formulas �146� and �148� do indeed coincide, a
fact not completely apparent at first sight.

Conversely, the exact expression for the large N variance,
Eq. �147�, is new62 since the general integral in Beenakker’s
formula30 does not appear easy to carry out explicitly. Obvi-
ously, Eq. �147� agrees with the known result30 for the con-
ductance var�G�=1 /8� for n=1.

From Eq. �147�, it is easy to extract the asymptotic value

v� = lim
n→�

var�Tn� =
1

2��
, �149�

which is plotted in Fig. 14 for �=2 together with Eq. �147�.
For general n, as one increases the value of t, so far we

have seen two regimes: regime I �0� t� t1
�� with support

over �0,Lp� and then regime II �t1
�� t� t2

�� with support over
the full range �0,1�. What happens when t increases beyond
t2
�? For arbitrary n, the analysis becomes rather cumbersome.

So from now we restrict ourselves only to the case n=2
�which turns out already to be rather nontrivial�. But at least
for n=2 we are able to obtain a full picture and in the two
sections below we show that apart from regime I and regime
II already discussed above, two further regimes appear as
one increases t beyond t2

�: regime III �for t2
�� t� t3

�� where
the solution has a disconnected support with two connected
components discussed in Sec. VI D and regime IV �for t3

�

� t�1� where the solution again has a single support but on
the other side of the box over �Mp ,1�. Since the solution in
regime IV is simpler �single support�, we will first discuss

this case in the next Sec. VI C and finally the more involved
case of regime III �with a disconnected support� will be dis-
cussed in Sec. VI D.

C. Support on [Mp ,1)(n=2): Regime IV

Focusing on the n=2 case, we now look for a solution of
Eq. �118� with a single support �Mp ,1� where Mp is yet to be
determined. Using the general single-support Tricomi solu-
tion, Eq. �31�, choosing a=Mp and b=1, one obtains the
following explicit solution:

�p
��x� = −

1

�2��x − Mp��1 − x�

��p Pr�
Mp

1 ��1 − x���x� − Mp�
x − x�

x�dx� + D
 ,

�150�

where D is an arbitrary constant. Evaluating the principal
value integral in Eq. �150� and imposing �p

��Mp�=0 we ob-
tain

�p
��x� =

− p�2x + Mp − 1�
2�

�x − Mp

1 − x
. �151�

The lower edge Mp is determined by the normalization
condition �Mp

1 �p
��x�dx=1, yielding a quadratic equation

for Mp: p�Mp−1��1+3Mp�=8 with two roots Mp

= �1�2�1+6 / p� /3. Noting that when p→−�, it follows
from physical consideration that the charge density must be
pushed to its rightmost limit indicating that Mp→1 as p→
−�. This condition forces us to choose the correct root as

Mp =
1

3
�1 + 2�1 +

6

p
	 . �152�

The condition 0�Mp�1 implies for p the condition p
� p3

�=−6. The relation between p and t is then obtained us-
ing Eq. �114�, resulting in the condition

15 + 27Mp + 13Mp
2 + 9Mp

3

16�3Mp + 1�
= t , �153�

where Mp is expressed as a function of p in Eq. �152�.
The solution of Eq. �153� is quite cumbersome to write
down explicitly but is, in principle, feasible. Note that when
p→−6 from below, Mp→1 /3 from Eq. �152� and conse-
quently from Eq. �153�, t→ t3

�=29 /36 from above. In other
words, the solution in Eq. �151� is valid in regime IV defined
by

p � p3
� = − 6; consequently, t3

� =
29

36
� t � 1,

�154�

This regime IV is shown in the extreme right part of Fig. 16.
Once p has been determined has a function of t from Eqs.

�152� and �153� and substituted into the density, Eq. �151�,
the action, and the rate function can be computed from Eqs.
�115� and �117�, by evaluating numerically the corresponding

10 20 30 40
n

0.065

0.07

0.075

0.08
var�Tn�

FIG. 14. �Color online� var�Tn� as a function of n�N, Eq.
�147�, for �=2. In red the asymptotic value v�=1 /2���0.07957,
Eq. �149�.
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integrals. We omit these details here. In Fig. 15 we plot the
theoretical density of eigenvalues for the n=2 case together
with Monte Carlo simulations with N=4 and p=−10.

D. Disconnected support (n=2): regime III

For n=2, it then remains to find the solution of Eq. �118�
in the narrow band t2

�=3 /4� t� t3
�=29 /36 or equivalently

for p3
�=−6� p� p2

�=−16 /3 �see Fig. 16�. This is the regime
III. Let us first try to anticipate what the solution may look
like in this regime. For this, let us consider the two regimes,
namely, regime II and regime IV, respectively, to the left and
right of regime III.

Consider first regime II �t1
�=3 /16� t� t2

�=3 /4�. In this
regime the solution �p

��x� has a single support over the full

range x� �0,1� given in Eq. �134�, which for n=2 �using the
special value of the hypergeometric function� simply reads,
with p2

�=−16 /3� p� p1
�=8 /3

�p
��x� =

1

��x�1 − x�
�1 +

p

8
�1 + 4x − 8x2�
 . �155�

Now, when t tends to the maximum allowed value in regime
II, namely, t→ t2

�=3 /4 from below or equivalently p→p2
�

=−16 /3 from above, the solution in Eq. �155� tends to

�−16/3
� �x� =

16

3��x�1 − x�
�x −

1

4

2

�156�

with a quadratic minimum at x=1 /4 where the density van-
ishes. This is just the edge of regime II. If t increases slightly
beyond t2

�=3 /4, this single-support solution is no longer
valid. However, it gives the hint that for t
 t2

�=3 /4, the
charge density must separate into two disjoint components,
one on the left side over �0, l1� and one on the right side over
�l2 ,1� with an empty stretch �l1 , l2� separating them. This
empty stretch must increase as one increases t beyond t2

�

=3 /4 in this regime III. Indeed, as t increases further, the left
support �0, l1� must shrink in size and the right support �l2 ,1�
must increase in size and finally when t hits the value t3

�

=29 /36, l1 must shrink to 0 and l2 must approach Mp=1 /3
and then one arrives in regime IV discussed in the previous
section. At exactly t= t3

�=29 /36 or equivalently at p= p3
�

=−6, the solution �border of regime IV� can be read off Eq.
�151� with Mp=1 /3

�−6
� �x� =

6

��1 − x
�x −

1

3
	3/2

. �157�

Thus, the solution in regime III, namely, for p3
�=−6� p

� p2
�=−16 /3 must interpolate between the solutions given in

Eqs. �156� and �157� valid, respectively, at the two edges of
regime III and have a disconnected support with two con-
nected components over �0, l1� and �l2 ,1�. We were able to
find this solution explicitly. Its derivation is outlined in the
Appendix. The result reads

�p
��x� =

− p

��x�1 − x�
��x − l1��x − l2�3, �158�

which is valid for all 0�x� l1 and l2�x�1 and the two
edges l1 and l2 are given by

l1 =
1

4
�1 – 3�1 +

16

3p
	 , �159�

l2 =
1

4
�1 +�1 +

16

3p
	 . �160�

Note that l1 and l2 are real only if p�−16 /3. Furthermore
l1�0 only if p�−6. Thus this solution is valid over the full
range p3

�=−6� p� p2
�=−16 /3. This then defines regime III.

Note also that the solution in Eq. �158� smoothly interpolates
between the solutions in Eq. �156� �when p→−16 /3� and in
Eq. �157� �when p→−6�.
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FIG. 15. �Color online� Density of eigenvalues x for N=4 and
p=−10 �theory vs numerics� for n=2.

FIG. 16. Schematic table summarizing the relevant phases in the
t and p space for the density of n=2 moment. As t varies in the
allowed range �0,1� and consequently the parameter p in �−� ,��,
the fluid density displays four different phases as shown in the top
panel. These 4 regimes are separated by three critical points: t1

�

=3 /16 �consequently p1
�=8 /3�, t2

�=3 /4 �p2
�=−16 /3� and t3

�

=29 /36 �p3
�=−6�. Consequently, the rate function �Tn

�t� has four
different expressions according to different regions in the t
� �0,1� segment.
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The relation between t and p can be obtained substituting
Eq. �158� in Eq. �114� and performing the integral. Similarly
the action and the rate function can be computed by using the
exact density and performing the integrals in Eqs. �115� and
�117� by MATHEMATICA, the details of which we omit here.
The Monte Carlo simulations in this regimes are much
harder to obtain due to large fluctuations in sampling from
the leftmost residual band 0�x� l1 and a very large N
is necessary to achieve a satisfactory picture. Nevertheless,
we observed upon increasing N a trend in the equilibrium
density which is fully compatible with the analytical
disconnected-support solution found above.

E. Final results for the n=2 moment case

In Fig. 16 we propose a schematic summary of the differ-
ent phases of the density of integer moments for the case n
=2. As a consequence, the rate function will display three
�and not just two, as for conductance and shot noise� nonana-
lytical points corresponding to physical phase transitions in
Laplace space. Starting from high p values, the fluid particles
are initially confined toward the left hard edge. Then, when p
hits the critical value p=8 /3, the fluid spreads over the entire
support �0,1�. In the narrow region −6� p�−16 /3 the den-
sity splits over two disjoint �nonsymmetric� components of
the support and the leftmost disappears upon hitting the
value p=−6, leaving the charges leaning against the right
hard wall.

VII. CONCLUSIONS

The Coulomb gas analogy, together with recently intro-
duced functional methods, brings about an efficient formal-
ism for the computation of full probability distributions of
observables �valid for a large number of electronic channels
in the two leads� in the quantum-conductance problem. Ge-
nerically, the distribution of any linear statistics of the form
A=�i=1

N a�Ti�, where the Ti’s are transmission eigenvalues of
the cavity and a�x� is any smooth function, can be derived
within the formalism described in this paper: the problem
amounts to finding the equilibrium configuration of an asso-
ciated 2D charged fluid confined to the segment �0,1� and
subject to two competing interactions: the logarithmic repul-
sion, generated by the Vandermonde term in the jpd, Eq. �2�,
and a confining potential whose strength is tuned by the
Laplace parameter p. Interestingly, this auxiliary Coulomb
gas undergoes different phase transitions as the Laplace pa-
rameter is varied continuously and this physical picture is
mirrored in the appearance of very weak singularities in the
rate functions of observables at the critical points. Already
the leading N term of the free energy of such a gas �the
spherical contribution� displays non-Gaussian features in the
tails while the central region obeys the Gaussian law, in
agreement with the general Politzer’s argument;63 conversely
the tails follow a power-law decay and the junctions of the
two �or more, as in the case of integer moments� regimes are
continuous but nonanalytical points. Note that it is not nec-
essary to develop a �1 /N� expansion of the free energy and
look for higher genus terms to appreciate deviations from the

Gaussian law. From the central Gaussian region, one can
easily read off the mean and variance of any linear statistics
of interest: this way well known results for, e.g., conductance
and shot noise are recovered and new formulas �such as the
variance of integer moments and its universal asymptotics�
can be derived. Our results are well corroborated by Monte-
carlo simulations both in the real and Laplace space, as well
as by comparison with exact finite N results when available,
which convincingly disprove the large-N asymptotic analysis
performed in Ref. 40. In summary, the Coulomb gas method
�well suited to large N evaluations� reveals a rich thermody-
namic behavior for the quantum-conductance problem al-
ready at the leading order level and we expect that it will
enjoy a broad range of applicability.
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APPENDIX: EXPLICIT TWO SUPPORT SOLUTION
FOR n=2 IN REGIME III

We consider the integral Eq. �118� for n=2

px = Pr�
0

1 �p
��x��dx�

x − x�
�A1�

and look for a solution that has a disconnected support with
two connected components ��0, l1� and �l2 ,1��. This solution
is valid in regime III discussed in Sec. VI D. While a general
single support solution of the singular integral equation can
be found using Tricomi’s formula given in Eq. �31� with
g�x�= px and discussed in Secs. VI A–VI C, it is much more
complicated to obtain an explicit solution with more than one
connected component of the support. To find such a solution,
we actually use an alternative method originally used by
Brezin et al.64 to find a single-support solution of the singu-
lar integral equation in the context of counting of planar
diagrams. This method consists in making a judicious guess
for the solution and then uses the uniqueness properties of
analytic functions in a complex plane to prove that the guess
is right. Although, for the single-support solution one does
not have to use this route since the explicit general solution
of Tricomi is available �the authors of64 were perhaps un-
aware of the general single-support explicit solution of Tri-
comi�. Nevertheless, this alternative method of Ref. 64 can
be fruitfully adapted to find a two support solution �as in our
case� in a simpler way �as demonstrated below�, where a
general solution is somewhat difficult to obtain explicitly.

Let us assume that the solution �p
��x� of Eq. �A1� has a

disconnected support with two connected components �0, l1�
and �l2 ,1� where l1 and l2� l1 are yet to be determined. Gen-
eralizing the route used for single-support solution in Ref.
64, we first introduce an analytic function �without the prin-
cipal part in Eq. �A1��

F�x� = �
0

l1 �p
��x��dx�

x − x�
+ �

l2

1 �p
��x��dx�

x − x�
�A2�
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defined everywhere in the complex x plane outside the two
real intervals �0, l1� and �l2 ,1�. This new function F�x� has
the following properties: �1� it is analytic in the complex x
plane outside the two cuts �0, l1� and �l2 ,1�, �2� it behaves as
1 /x when �x�→� since ��p

��x��dx�=1 due to normalization,
�3� it is real for x real outside the two cuts �0, l1� and �l2 ,1�,
and �4� as one approaches to any point x on the two cuts
�0, l1� and �l2 ,1� on the real axis, F�x� i��= px� i��p

��x�.
This last property follows from Eq. �A1�.

From the general properties of analytic functions in the
complex plane it follows that there is a unique function F�x�
which satisfies all the four properties mentioned above. Thus,
if one can make a good guess for F�x� and one verifies that it
satisfies all the above properties then this F�x� is unique.
Knowing F�x�, one can then read off the solution �p

��x� from
the fourth property. It then rests to make a good guess for
F�x�. We try the following ansatz for F�x� valid everywhere
outside the two cuts �0, l1� and �l2 ,1�:

F�x� = px −
p

�x�x − 1�
��x − l1��x − l2�3. �A3�

This ansatz clearly satisfies the first property. Now, expand-
ing F�x� for large �x� we get

F�x� → �− 1 + l1 + 3l2�p +
p

8
�− 3 + 2l1 + l1

2

+ 6l2 − 6l1l2 − 3l2
2�

1

x
+ O�x−2� . �A4�

Since the second property dictates that F�x�→1 /x, it follows
that we must have

l1 + 3l2 = 1, �A5�

�− 3 + 2l1 + l1
2 + 6l2 − 6l1l2 − 3l2

2� = 8. �A6�

Eliminating l2 in Eq. �A6� using Eq. �A5� gives a quadratic
equation for l1, 2l1

2− l1−1=6 / p with two solutions: l1
= �1�3�16 / p� /4. The correct root is chosen by the fact that
when p→−6, l1→0 as follows from the solution in Eq.
�157�. This then uniquely fixes l1 and l2 given, respectively,
in Eqs. �159� and �160�.

The ansatz F�x�, with the choices l1 and l2 as in Eqs. �159�
and �160� then satisfies the second property. It is easy to
check that F�x� satisfies the third property as well. From the
fourth property one then reads off the unique solution as
given in Eq. �158�. This two support solution is clearly valid
only in the regime III, namely, for p3

�=−6� p� p2
�=−16 /3

and it smoothly matches with the solutions of regime II and
regime IV, respectively, as p→−16 /3 and p→−6.
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